
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1971

Model calculation studies of the transport
properties of a dilute gas of diatomic molecules in a
static magnetic field
Eugene Rex Cooper II
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Physical Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Cooper, Eugene Rex II, "Model calculation studies of the transport properties of a dilute gas of diatomic molecules in a static magnetic
field " (1971). Retrospective Theses and Dissertations. 4438.
https://lib.dr.iastate.edu/rtd/4438

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F4438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F4438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F4438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F4438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F4438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F4438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=lib.dr.iastate.edu%2Frtd%2F4438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/4438?utm_source=lib.dr.iastate.edu%2Frtd%2F4438&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

72-5186 

COOPER, II, Eugene Rex, 1945-
MODEL CALCULATION STUDIES OF THE TRANSPORT 
PROPERTIES OF A DILUTE GAS OF DIATOMIC 
MOLECULES IN A STATIC MAGNETIC FIELD. 

Iowa State University, Ph.D., 1971 
Chemistry, physical 

University Microfilms, A XEROX Company, Ann Arbor, Michigan ; 

THIS DISSERTATION HAS BEEN MICROFLIMED EXACTLY AS RECEIVED 



www.manaraa.com

Model calculation studies of the transport properties 

of a dilute gas of diatomic molecules 

in a static magnetic field 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subject: Physical Chemistry 

Eugene Rex Cooper, II 

Approved: 

In Charge of Maj^r Work 

Fq^z^ the Major Department 

Foiy y/eMBraduate College 

Iowa State University 
Of Science and Technology 

Ames, Iowa 

1971 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

PLEASE NOTE: 

Some Pages have indistinct 
print. Filmed as received. 

UNIVERSITY MICROFILMS 



www.manaraa.com

il 

TABLE OP CONTENTS 

Page 

INTRODUCTION 1 

BOLTZMANN'S EQUATION FOR RIGID CONVEX MOLECULES 7 

Derivation of Boltzmann's Equation 7 

Linearization of Boltzmann's Equation 13 

Solution of Boltzmann's Equation 16 

I^^) for Diamagnetlc Species in a Magnetic Field 20 

THERMAL CONDUCTIVITY 26 

Kinetic Theory 26 

Numerical Results 35 

VISCOSITY 59 

Kinetic Theory 59 

Numerical Results 66 

APPENDIX A. COLLISION INTEGRALS 78 

Geometry of Rigid Convex Molecules 78 

Tabulation of Collision Integrals 84 

Isotropic Tensors 95 

APPENDIX B. SYMMETRY IMPLICATIONS 99 

LIST OF SYMBOLS 102 

LITERATURE CITED 106 

ACKNOWLEDGMENTS 109 



www.manaraa.com

1 

INTRODUCTION 

During the past decade there has been a renewed interest 

in the effects of external fields on the transport properties 

of polyatomic gases. The revival of Interest in this subject 

resulted from two separate and independent discoveries in the 

early igGO's. In I96I Kagan and Maksimov (1) showed that 

magnetic field effects for paramagnetic gases could be 

encompassed within the Chapman-Enskog theory. Their starting 

point was the kinetic theory for polyatomic gases developed 

by Kagan and Afanas'ev (2), who were the first to consider 

explicitly the anisotropic dependence of the distribution 

function on the internal angular momentum. A year later it 

was shown experimentally by Beenakker et al. (3) that the 

magnetic field effects were quite general properties of all 

polyatomic gases Instead of Just paramagnetic gases, as 

earlier investigators had thought. 

The original investigations of the magnetic field 

effects by Senftleben in 1930, and those of subsequent early 

workers, were concerned only with paramagnetic gases. 

(References for these early papers can be found in a recent 

review article by Beenakker (4).) Their experiments showed 

that in the presence of a magnetic field, H, the transport 

coefficients decrease slightly (0.1% to 1.0%). The effect 

at constant temperature is a function of H/p, where p is the 

pressure, and saturates at large H/p values. No effect is 
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observed for monatomic gases. 

In 1938 Gorter i b )  r . a v e  a qualitative :l ntorpretat I on oC 

these results. He based his interpretation on the change oC 

the molecular mean free path by the magnetic field. This idea 

was elaborated more quantitatively by Zernike and Van Lier (6). 

Like Gorter, they imagined the rotating diatomic molecule as a 

disk with a magnetic moment directed along the axis of rota­

tion, i.e., perpendicular to the disk. In the absence of a 

field the direction of the axis of rotation does not change 

during the time interval between two collisions. In the 

presence of a field, however, the magnetic moment, and hence 

the axis of rotation coupled to it, will precess around the 

field. This precession causes a periodic change in the 

collision cross section of the molecule in the time interval 

between collisions. Thus the preferential alignment (polar­

ization) of the molecular angular momenta, caused by the 

gradients of temperature or stream velocity in the gas, will 

be partially destroyed by the field. Since the polarization 

tends to increase the mean free path, the effect of the field 

is to decrease the transport coefficients. The destruction 

is complete when the precessional frequency becomes much 

larger than the collisional frequency. 

With this simple and fairly satisfactory model to explain 

the observations, there was little incentive to pursue this 

field of study after the 1930's. No further interest was 

shown, and this potential source of information about non-
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spherical molecular interactions was overlooked for twenty 

years. 

The uncovering of this rich source of information in the 

early I960's prompted some rather active research, especially 

by Beenakker and his colleagues at Leiden. In fact the ef­

fect of an electric or magnetic field on the transport prop­

erties of molecules is commonly known as the Senftleben-

Beenakker effect. The Leiden group has conducted rather 

thorough experiments and theoretical considerations of the 

external field effects. Their results along with those of 

Kagan and colleagues are summarized in a review article by 

Beenakker and McCourt (7). • " 

One of the Important results of this renewed interest in 

the field effects was the realization that the lowering of 

the spatial symmetry by a magnetic field gives rise to trans­

verse components in the transport properties. For the case 

of thermal conduction the transverse component corresponds to 

a heat flux perpendicular to both the external field and tem­

perature gradient. In all there are three thermal conductiv­

ity coefficients (one transverse) and five shear viscosity 

coefficients (two transverse). Instead of the single coef­

ficients of the field-free case. Theoretical expressions 

for these transverse effects were obtained by Kagan and 

Maksimov (8), Knaap and Beenakker (9), and McCourt and 

Snider (10,11), and the effects have also been observed 

experimentally (7). 
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Kagan and Maksimov (1) also Introduced a now widely 

adopted technique for solving the linearized Boltzmann 

equation. They expanded the distortion of the local 

equilibrium distribution function in irreducible Cartesian 

tensors in the linear and angular momenta. This expansion 

set was then truncated, and simple, analytical expressions 

were obtained for the transport coefficients by making 

certain approximations. The most Important of these is 

the neglect of certain collision Integrals, the justification 

for which is centered around the assumption that the 

nonspherlclty is small, i.e., that the nonspherlclty has 

only a small (but important) effect on the dominant, elastic 

collision cross sections. 

The obvious questions arising from such an analysis 

are concerned with the number of expansion terms needed and 

with the validity of the assumption that the nonspherlclty is 

small. Model calculations are of considerable Interest in 

this regard, since they provide quantitative answers to these 

questions. The first such model calculations were done by 

Klein, Hoffman, and Dahler (12), on the thermal conductivity 

of rough spheres. Rough spheres are rigid spheres that 

reverse relative velocity (both linear and angular) upon 

Impact, i.e., there is no slip upon contact. Using this same 

model McCourt, Knaap, and Moraal (13,14) examined in detail 

the effect of various approximations for the thermal 

conductivity and viscosity. 
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However, the rough-sphere model is rather unrealistic, 

especially for linear molecules. A much more realistic model 

is the spherocylinder, a cylinder with hemispherical caps, 

or the ellipsoid of revolution. Both of these models will be 

employed in this thesis to analyze the transport coefficients 

of linear molecules in external fields. A perturbation 

scheme similar to that of Kagan and Maksimov (8) will be 

employed to examine the assumption of small nonsphericity. 

The collision operator will be divided into a spherical and 

perturbing nonspherical part by a division which is somewhat 

different from that of Kagan and Maksimov. 

Although the primary objective of this thesis is the 

study of the magnetic field problem, the electric field case 

will also be considered for linear ^2 molecules. If these 

molecules have only a small dipole moment, they will not 

have a dominant dipole-dipole collision interaction, and 

hence can be represented by rigid interaction models. Many 

of the solution techniques employed in the magnetic field 

case carry over directly to the electric field case, and 

discussion of the electric field problem fits rather naturally 

in the context of a treatment of the magnetic field problem. 

The electric field transport coefficients for linear 

2 
molecules are functions of E /p, where E is the electric 

field. This different field dependence results from a 

perturbation by the field to produce a component of the 

dipole along the field-free rotation axis and a component 
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perpendicular to the axis (15,16). The electric field then 

causes a precession of the axis of rotation in a manner 

similar to the magnetic field. However, the mechanics are 

somewhat different in that the axis of rotation precesses 

rapidly about the field-free axis, which in turn precesses 

much more slowly about the field. ' 

In an electric field the transverse coefficients are 

absent for symmetry reasons, but for nonlinear molecules, 

cross effects between the heat flux and viscous flow can 

occur. In Appendix B we consider In detail the implications 

of symmetry on the fluxes for the case of an electric and a 

magnetic field and thus obtain the Onsager-Casimlr relations. 

The following model calculation study of the transport 

properties of dilute gases begins with a discussion of the 

Boltzmann equation for linear polyatomic molecules. The 

collision model and solution techniques (both exact and by 

a perturbation scheme) will be discussed in detail. Finally, 

calculated results for both the thermal conductivity and 

viscosity will be presented. 
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BOLTZMANN'S EQUATION FOR RIGID CONVEX MOLECULES 

Derivation of Boltzmann's Equation 

In this chapter only rigid-body potentials are consid­

ered, and the discussion is limited to a dilute gas of linear 

molecules. A much more general consideration of the Boltzmann 

equation for polyatomic gases can be found in a recent paper 

by Hoffman and Dahler (17). The usual approximations of 

assuming molecular chaos, ignoring all but binary collisions, 

and ignoring chattering, will be utilized. 

The equation of motion governing the N-particle distrib-

(N) 
ution function, f , for a single-component gas is the 

Liouville equation 

The multidimensional vectors and are conjugate coordi­

nates and momenta of particle i and have as many components 

as the molecule has degrees of freedom. The vectors are to 

be taken as Cartesian components in the N-particle phase 

space in which f ' * * »^N»Sl'P2'* * ''Pn'^^ is defined, 

although they can be generalized coordinates and momenta of 

the molecule. The function f^^^ is normalized to N!, and 

f^^^dg^...dq^dp^...dp^ is the number of N-particle clusters 

(comprising an initial ensemble of systems) such that there 

is one particle in the range dq^ about q^ and dp^ about p 
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one in the range dq^ about q^ and dg^ about pg, and so on for 

all N particles. The dots above q. and p. refer to time 

derivatives. 

Integrating the Liouville equation over all the coordi­

nates and momenta of all the particles except particle 1, we 

obtain 

where (N-h)lf^^^ = and dZ^-hL dq^^^.. .dqj^dp^^^... 

dp^. It is the single-particle distribution function f^^^ that 

appears in the Boltzmann equation and is used to calculate 

the transport coefficients for a dilute gas. 

If we now consider only pair interactions and write 

•(1) N •(2) •(1) 
^2 = + % g^i ) where is the change not due to 

1=2 

other molecules, i.e., the change occurring in free-flight 

motion, we obtain 

where di = dq^dp^. For rigid bodies the pair interaction 

potential is zero outside the excluded volume (the volume 

excluded to the mass center of molecule 2 by molecule 1 when 

both molecules have a fixed orientation) and infinite within. 



www.manaraa.com

9 

( 2 )  
Therefore f has a step function discontinuity, which can 

( 2 )  
be written as çf , where | =1 If molecule 2 Is outside the 

excluded volume and ^=0 If It Is Inside the excluded volume. 

That Is, for the purpose of taking derivatives, the dlscontl-

( 2 )  
nulty can be taken in ? and f^ ^ replaced by a continuous 

function. We define 

j(2)(j.(2)) , ̂.Jd2j<2)r(2) . ̂̂5a2(i.j,p(2)i.(2), 

so that equation 1.3 can be written as 

» 1 

( ? )  ( ? )  
The quantity J (f ) can be written as 

since the last terra Integrates to zero. Further evaluation 

can be made by noting that 

j(3)(f(3)) ̂  1.5 

This equation is obtained from the Liouvllle equation by 

integrating over all coordinates and momenta except those of 

particles 1 and 2. The term 
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Df 
We define the derivative, which ignores forces 

between molecules 1 and 2, by 

5Î - If + ^ 

( ? )  ( ? )  
Then we can write J (f^ ) as 

j(2)(f.(2)) ̂  _ Jd2(l-|)̂ (̂̂ f̂ ^̂ ) +fj(3)(f(3))} . 1.7 

The last term integrates to zero, since |(1-(f^) is 

zero both inside and outside the excluded volume, and the 

first term reduces to 

= _ Jd2(l-|)f^^^^. 1.8 

The volume element d2 is now replaced by 

where ^i locates the mass center of molecule i, 

and ̂ 2 gives the orientation of molecule 2. We write d£g=d2dJj, 

where dz is the surface element on the excluded volume and 

4=%k is a vector perpendicular to the surface of the excluded 

volume. Here k is a unit vector. If *>0, thenf=l, and if 

j?<0, then 5=0. We now write ^ ^ 

&(#) is the Dirac-delta function. Thus the integration over 

J? is effectively over extremely small values, for which 
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Here is a vector from the mass center of 

body i to the edge of the body where contact is made. Now 

^ = k-^ = k- (Zg- ̂ 1 + §§2). 

^ A ^ ̂  s A 
Since for a general convex body e^l'^'^bi^ ' where e^^ 

A D£ 
and e^^ are two unit vectors in body i, we can write ̂ i as 

^1 = co^X ( Ifi _ + ®b 1 Hj. ̂ • 

Using a supporting function (discussed in Appendix A) to 

define we can show that ̂  = k'(rg-ti)^x^^+y^;P2^ • After 

integration over J? , equation 1.8 becomes 

j(2)(f(2)) ̂  .Jdggdg&g^dzk.gf^^), 1.9 

where the angular velocity. 

We now divide this integral into two parts, the post-

A 

collision for which k"g>0 and the precollision for which 

A 

k'g<0. Since the collisions are instantaneous, we have 

( 2 )  ^  ( 2 )  
^post'^pre ' where the prime denotes a function of pre-

collisional variables. If we now invoke molecular chaos, 

which allows us to factor f^^^ into for precolli-

sional states, equation 1.9 becomes 

j(2)(J.(2)) ̂  -JdVg^dkjk'g^f^^^^fg^^^ + fjl^fg^^, 1.10 

k'g>0 k'g<0 

A.,* 
where dV2=dg2d#2 and dZ=dkj(k,a^,*2). The explicit positional 
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(2) 
dependence of f has not been indicated, since for a dilute 

gas (but not for a dense gas) we can ignore the difference 

over distances of the order of a molecular length. Hence 

fj^^ and fg^) are each evaluated at r^ but at p^ and , 

respectively. (For convenience we henceforth delete the 

subscript 1 for the first particle and employ the subscript 1 

for the second particle.) 

Although the Boltzmann equation has been derived for 

convex bodies, there are no changes for rigid spherocylinders. 

When the two cylinders are parallel and in contact, there is 

A 

no unique k. However, there is little difficulty in evalu­

ating the differential element of excluded-volume surface. 

This has been done by Klein et al. (l8). 

If the discussion is now limited to molecules with C*. 

symmetry, we can choose as independent variables ;£•, v (the 

velocity of the center of mass), e (a unit vector along the 

symmetry axis), and y (where ye=0). The latter are not 

conjugate variables but can be treated as such. Instead of 

e andw, we can select the angular momentum in the space 

frame, M, and f, the phase of ê in the plane perpendicular 

to M. If we choose the latter, the Boltzmann equation becomes 

(& + 1.11 

where the only external force is from a magnetic field. The 

time scale of the Boltzmann equation is the time between 
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collisions, so it is inconsistent to retain any dependence 

on <p in since <J> varies rapidly between colllsionr>. 

Hence we average over f to obtain 

1.12 

where ô(,(f ) is j(2)(^(2)) averaged over f and F=M.^. 

For a magnetic field, H, M=!fMXH, where ï is the gyromagnetic 

ratio (8). For an electric field, E, M=(3/2)dgI(M-E)/M\ 

where dg is the dipole moment lying perpendicular to M and 

I is the moment of inertia (15). The electric field equation 

given here is not applicable to NO, which has a nonvanishing 

moment along M due to electronic orbital angular momentum. 

Formally such molecules can be considered to be symmetrical 

tops with a fixed, but nonzero component along the symmetry 

axis. 

Linearization of Boltzmann's Equation 

To generate a solution of Boltzmann's equation we employ 

the Chapman-Enskog method. That is, we introduce an ordering 

parameter € and write f^^^ = f^^^ + ef^^^ + ^^^[2] ̂  ... 

This parameter enters the Boltzmann equation as 

1.13 

The ordering procedure is discussed in detail by Chapman and 
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Cowling (19) and Hoffman and Dahler (17). The first two 

equations of this sequence are as follows: 

0 = -P(f(°)) + 3g(f(^\f(°)) 1.14 

and 

=  - f ( ° ) p C * )  -  J i t ) ,  1.15 

where f[l]=*f(0) and J(%) = -^^(Tif^) 

Solution of these equations is sufficient for a linear 

phenomenological theory. 

The solution of equation l.l4 is the local equilibrium 

distribution function 

f(°) = n(m/2irkT)̂ /̂ (4trikT)"̂ exp(-Ŵ -Q̂ ), l.l6 

where W=(m/2kT)^^^(v-u), Q=(2IkT)"^^^M, k is Bolt •'nann's 

constant, m is the molecular mass, and n, u, and T are the 

local density, stream velocity, and temperature, respectively. 

Since 

ai\ rfi] 

=  ,  1 . 1 7  

n 

U I - luui jju 

(5/2)kTj 

where d2=dvdM/M, f^=l, ̂^=Y, and f^=(m/2)(y-u)^ + M^/2I, it 

follows that jdsf^Xf^ = 0. For solutions of equation 1.15 

to exist, the Inhoraogeneous portion (left-hand si Je) of the 

equation must be orthogonal to all solutions of the 
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homogeneous adjoint equation + j'^(>2.) = 0, wtirrc 

J^and are defined In Appendix H. These solutions are the 

summational invariants (20). The orthogonality conditions 

Î<îst̂ (|̂ + = 0 

give the macroscopic hydrodynamic equations, from which we 

can obtain the time derivative (^) part of f^ as space 

derivatives of u and T. We can then express the Boltzmann 

equation as 

f ( ° ) [ [ 2 ^ W  +  ( 4 W ^ / 1 5  -  2 q 2 / 5 ) S ^ ^ ^ ] ; | ^  +  [ ( W ^ - 5 / 2 )  +  

(Q^-l)](2kT/m)^/^W.^(lnT)] = -f^°^P(?i) + Jit), l.l8 

where and the Kronecker delta. 

The solution of the linear equation 1.18, which is 

consistent with the subsidiary conditions, equation 1.17, is 

of the form 

= -n"^[(2kT/m)^/^A-^(lnT) + B:|^ ]. 1.19 

This allows us to separate the Boltzmann Into the two parts 

f(°)[(W^-5/2) + (Q^-1)]^ = n"^f^°^F(A) + n"^J(A) 1.20 

and 

f ( ° ) [ 2 W W  +  ( i t W ^ / 1 5  -  2 Q ^ / 5 ) S ^ ^ h  =  n ' ^ f ^ ° ^ F ( B )  +  

n"^J(g). 1.21 
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To solve for Ti, we must find ^ and B, from which we obtain 

the thermal conductivity and viscosity tensors, respectively. 

Solution of Boltzmann's Equation 

The most widely used method for solving equations 1.20 

and 1.21 is that of Kagan and Maksimov (8). These authors 

expanded the unknown A or g in irreducible Cartesian tensors 

in W and g. The tensors anisotropic in g are of utmost 

importance, since they are necessary for a prediction of the 

field effect. To solve for the tensor expansion coefficients, 

one employs the usual method of moments, which results in an 

infinite set of equations for the expansion coefficients. 

Even for a small, truncated expansion set, an exact 

solution of these equations is extremely difficult. There­

fore, approximate methods have been used to obtain solutions. 

The most common method of approximation is to assume that 

the nonsphericity is small, hence allowing for the neglect 

of certain terms. Usually the collision operator, J, is 

divided in some way into a "spherical" and "nonspherical" 

part. Such a division, especially with regard to model 

calculations, has recently been given by Cooper and 

Hoffman (21) and will be outlined below. 

We can represent the collision operator in any complete 

set of functions which depend on the direction of % and g. 

Specifically, we can use the irreducible Cartesian tensors 

of rank p and of rank q in their natural form 
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7 7 
multiplied by scalar functions of W" and Q . An lrr'educib.U> 

tensor In natural form is characterized by being totally 

symmetric and contractionless on all sets of indices (22). 

The operation of J on such a product function cannot alter its 

tensor symmetry. Therefore, the matrix elements J.,(^,'^1)= 

jQ'))) have the tensor symmetry of the 

f u n c t i o n s  | ^ ( p , q ) f j  ( p ' , q ' )  o r  o f  [ g ] ^ [ W ] ^ [ W ] \  

where (x^,x^ = n"^jdcx^xg. Here i and j are labels for 

the scalar functions, p and q denote the rank of the irreduc­

i b l e  t e n s o r s ,  a n d  t h e  t e n s o r  T ^ . , , = T . ,  . . .  N o w  J . . )  i s  
^IjKl ZIKJ1 sîlj p 

an isotropic tensor, which can be written as a linear combi­

nation of a given set of linearly independent isotropic 

Cartesian tensors (of the appropriate rank), each of which 

is a basis for the totally symmetric representation of the 

3-dimensional rotation group. Thus the direct product 

[Q]^'^^[W]^P^[W]^P ^ in the integrand must be a basis 

for a representation containing the totally symmetric repre­

sentation at least once in order that J..(P,'^,) be nonzero. 
sij p' ,q" 

If we approximate J by some spherical limiting form, 

then g Is collislonally invariant. Therefore [g]^ 

and [W]^P^[W]^P ^ must each be a basis for a representation 

containing the totally symmetric representation if a non-

vanishing matrix element of (J in the spherical limit) is 

to exist. From group theoretical considerations it can be 

shown that each of the products will contain a basis once and 
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only once, if and only if, p=p' and q=q'. Each nonzero 

matrix element of then is the isotropic Cartesian tensor 

g(P5q) times a scalar, where is of rank 2(p+q) with 

the middle 2p indices those of and the outer 2q indices 

those of Here 8^^^ is the isotropic tensor which is 

the basis for the totally symmetric representation contained 

in the product representation of where x is 

W or Q. The tensor is identical with of Coope and 

Snider (23) and Is normalized so that [y]^"^= | ® 

where ̂  is any 3-dimensional vector and o denotes a con­

traction of n indices. 

We now represent the collision operator as J=J^^^+ ( 

Since can be written as a linear combination of 
sJ-*-J PjQ. 

isotropic tensors, one of which is , arising from the 

product of the basis of the totally symmetric representation 

in and [Q]^^^[Q]and the others from direct 

products of other bases in and [Q]^^, we 

define the matrix elements of as those elements of J 

which have the tensor character That is, 
= ~ r r 

is a scalar times S The tensor character of J is 

the same as but the scalar coefficients are in general 

slightly different. In particular, the matrix elements of 

Jg between functions, one of which is only a function of Q, 

are always zero, whereas this is In general not the case for 

The operator contains the other elements of J, 

f 0 ) 
which are assumed small compared with those of J , since 
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they result from the nonspherlcal nature of the interaction. 

The parameter ( serves to identify these elements of J. 

We can now write the Boltzmann equation in the generic 

form 

C = 1.22 

where C stands for the left-hand side of equation 1.20 or 

1.21 and ? for A or and 

-n~^J^^^. Using the perturbation idea of Kagan and 

Maksimov (8), we obtain for £ 

$ = + 62i(0Wl)i(0Wl)i(0)C -

f3(j(0)^(l))3g ^ 1.23 

where Thus the problem now is to evaluate 

For the magnetic field case we can evaluate for diamag-

netlc species without much difficulty, but for the paramag­

netic species the problem is somewhat more difficult. In 

both cases is diagonal with respect to the tensor 

p r o d u c t  [ W ] ,  i . e . ,  ^  d o e s  n o t  m i x  t e n s o r s  o f  

different symmetry. In the diamagnetlc case is diagonal 

with respect to eigenfunctions of \ which greatly sim­

plifies the calculation of the inverse in terms of the eigen­

functions. This Is not the case for paramagnetic species, 

but It is not of much consequence in practice when we use a 

small expansion set. The operator P is diagonal for any 
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set of orthogonal basis functions for the dlamagnetic case, 

so in practice one might find It easier to calculate the 

inverse of instead of finding the eigenfunctions of 

However, to find a general expression for the inverse, it is 

( 0 ^ 
necessary to use the eigenfunctions of J . 

The electric field case for molecules presents a 

rather formidable problem in general, since is not 

diagonal in the tensors The nonzero elements 

of F are between tensors with identical values of p and values 

of q that differ by one. Hence Is an infinite matrix of 

coupled angular momentum tensors. However, for a small ex­

pansion set the evaluation of the inverse is fairly simple. 

The specific evaluation of will be given in the viscos­

ity and thermal conductivity chapters for such truncated sets. 

Only for dlamagnetic species In a magnetic field will a gen­

eral form of the inverse be given. 

for Dlamagnetic Species in a Magnetic Field 

We denote the eigenfunctions of by (p,q), where 

2 2 
k denotes a scalar function of W and Q and p and q label 

the irreducible Cartesian tensors in W and Q. Thus ^ is 

represented by a diagonal matrix with elements f 
SÎ KK P J Q 

:kk(g:q). "here = (f^"'(p,q) ,f> (p,q))> and 

° Here »^°^(p,q) denotes the 

eigenvalue of operating on ^^'^\p,q). The tensor 
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^kk(pjq) written as ^ (p,q ) ,f ,q)>Xqh, 

A 

where h is a unit vector parallel to H and Xg indicates the 

A 

sum of terms obtained by crossing h into the first q right-

hand indices of ̂ k:^(p'q) - We can write as 

Skk'plq' = V' "here 

b^(p.q) = H(g''>(p,q).ïf'0>|<'»(p,q)>o2(p+<l)g(p,q)/ 

(2p+l)(2q+l). 

Thus we must compute the inverse with matrix elements 

I^(p,q), such that 

In order to further examine I^(p,q) (a tensor which is 

traceless and symmetric on its first and last p and q 

indices and invariant to rotations about the field direction), 

we need to consider a linearly independent basis set of 

tensors of rank 2q which are traceless and symmetric on 

their first and last q indices and are each a basis for the 

totally symmetric representation of the group of rotations 

about an axis along the field. Such a set is 

Bj,=')(q) . n,=0,1.2 1.24 

and 

= Nqj^I(h)'3-^V.(g^2))m^-)q-m m=l,2,...,q 1.25 
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where 

= 2^""^(q+m):(q-in)I/(m'. (2q)!), 

(h)^ is a polyad in h of rank m. 

u(2) = ;(!) - hh. 

V = -hxg(^\ 

^^1^2ra^^2^2ra-l-• 

o 
and i Is the sum over all different permutations of the first 

and last q indices. The symbol ° Indicates that the necessary 

terms are added to make the tensor traceless on all its first 

and last q indices. The above tensors are orthogonal in the 

following sense: 

5<^'(,)o<lB(a)(c,) = 1.26 

B < ' ' ' ( q ) o < Ï B < t ) ( < i )  1 . 2 7  

The tensors are also the identity elements, in 

Cartesian form, of the irreducible real representations of 

the group (C*) of rotations about the field direction (the 

basis for the representation being the tensors where 

x=Vi or ^). The are also elements of the representa­

tion corresponding to rotation by «/2m. Since each Irreduc­
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ible representation for m=0 to q is contained once and only 

in the representation (with as the basis), it follows 

that 

I'"' 1-29 

Since I^(p,q) is a basis for the totally symmetric represen­

tation of Ceo, then 

where a^and b^ are to be determined. The tilde above the 

tensors means that has been inserted in the middle of 

the tensors to give a new tensor of rank 2(p+q). The same 

orthogonality conditions also hold for these tensors. 

We can write F^^(p,q) as 

since 

Thus we have the relation 

fc(p,q)oP̂ «(»̂ '"(p.q)S<P'0' - \(p.q)Jini|̂ '='(q)) = 

' " V k ( P . 9 ) ) | < ' ' > ( q ) ]  =  J o i i ^ ) ( q ) .  ^  1 . 3 2  
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Since the B^^^(q) and are linearly independent, wv 

have that 

Sq = l/<p^°^(p,q), 

<Pj^°^p,q)aj^ = (1 + m^d^(p,q))"^, 

dj^(p,q) = b^(p,q)/f^°\p,q), 

and finally 

I , ( p . q )  =  < > ( p . q ) r ' ( i < " > ( q )  +  W  +  

md^(p,q)B^^\q) )/(! + m^d^(p,q))]). 1.33 

The saturation limit (H-> «») is just (q)/^^*^^ (p,q). 

Therefore for a solution of the kinetic equations for H=oo, 

only the © ̂ Bq^^ (q) part of [0,]^^^ is needed in the 

( 3. ) 
trial functions. This is not surprising since Bq (q) is 

the identity element for the totally symmetric representation 

of the C«o group and hence just projects out the part of 

which Is a basis for the totally symmetric represen­

tation of Coo. This is equivalent to averaging about 

the field, since only a basis of the totally symmetric 

( 2 )  
representation survives such averaging. For example, [g] 

averaged about the field yields [(h-Q)^ - Q^/3](hh - U^^V2), 

which is Identical with ®^Bq̂ ^(2). This says that 
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all the tensor polarization of is destroyed except 

for the [Q]o(q) part. This is also true for the 

paramagnetic case, since there is no coupling of different 

angular momenta tensors either. However, for the electric 

field problem, where such coupling occurs, not only does 

the [Q] Q (q) part of escape destruction by 

the field, but small contributions from other parts are also 

not destroyed. 
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THERMAL CONDUCTIVITY 

Kinetic Theory 

The heat flux vector for a dilute gas with no visco-

thermal coupling is given by 

q = jdc(v-u)(m(Y-u)^/2 + M^/2I)f^^^ 2.1 

or 

q = _(2k^T/m)<f(°)(W^ + Q^)W,A>.|^. 2.2 

3T 
Since in a linear phenomenology q is defined by q = 

we recognize the thermal conductivity tensor X as 

h= (2kVm)<f^°^W^ + Q^)W,A>. 2.3 

We expand A in irreducible tensors in W and Q as follows: 

where the S^"^(x^) are Sonine polynomials, which are given by 

= p^Q (n+m+1) (-x^)P/p'. (n-p) !r(p+m+l) 

and obey the orthogonality condition 

jdxexp(-x^)s(^)(x^)s^^' = S ,r(n+m+l)/2(n:). 
Q ill 111 nil 

The tensors are field-dependent expansion coefficients 

that transform according to the totally symmetric group of 

rotations about the field direction. The subsidiary 
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conditions (equation 1.17) require that and that p 

must be an odd integer. Thus we can write \ as 

h = (2k^T/m)<p,A> = -(k^T/m)(5A^°^° + 2A^°°^), 2.5 

where D = -f(°^[(5/2-W^) + (1-Q^)]W = + 

Sq ^^(Q^))W. This direct dependence of h. on and A^^^^ 

is a result of our choice of polynomial subscripts. A choice 

of p-1/2 instead of p+1/2 would result in a direct dependence 

of X on and A^^^^ with the subsidiary conditions giving 

^1000_^1010^ This latter choice would require the evaluation 

of collision integrals which are more numerous and more 

difficult. 

We now truncate the expansion for A. From equation 2.5 

we already know two terms that are definitely of importance. 

To study the effects of angular momentum anlsotropy we must 

include some tensors with q/O. For the magnetic field case 

we include one term which is odd in the angular momentum 

(q=l) and one which is even (q=2). In a sense this is just 

a trial and error process. However, it will be found that 

the term with q=2 gives the dominant contribution. This 

means that for the electric field case we must include a 

term with q=3, since the dominant term couples directly with 

q=l,3. Thus, for the electric field case we approximate A by 

A = A^ + ̂ -O^A^ + *,,@^A^ + 2.6 
~ i  s  " 2  e t  « 3 »  %  4  «  ê 5 «  



www.manaraa.com

28 

v;hore 

= (5/2-W^)W, 

^ 2  =  ( l - Q ^ ) W ,  

^3 = W[Q](^\ 

|i| = 

and in the magnetic field case we ignore 

If we multiply equation 1.20 by each of the and 

integrate over all the variables of particle 1 (except r), 

we obtain the following set of tensor equations for the 

expansion coefficients: 

d^ = [k,l]-^^ + [k,2]-A^ + [k,3]0^A^ + + 

[k,5]oy, 2.7 

where k=l to 5, d^ = 5/48^^^, d^ = l/28^^\ d^ = d^ = d^ = 0. 

Here [k,m] = h^^^ + (k,m), where h^^ = (^m)) and 

(k,m) = . The collision integrals h^^ are 

tabulated in Appendix A. For diamagnetic species V = y/^g^/fi, 

where is the nuclear magneton and g^ is the rotational 

g factor. Hence we obtain for the diamagnetic species in 

a magnetic field 

(4,1) = -(^p/6)|(''>(l), 

A = 1010_ 

A = 

A-" = ^1200^ 

A = a"»". 

A^ = 
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(3,3) . -^2^^n5)l^4n^^2), 

and 

<5'5) = Vd mW"'':). 

Where = (mkT/n')^^^(/^g^/d^fi) (H/p) and d is the Internuclear 

distance. For the V3/2 ̂ tate of NO, îf = -3/gVM^, andJ4^ is 

the Bohr magneton. Here 

(4,1) = (^p/2 )§(^)(1), ; • 

(3.3) = 

and 

(5.5) =/»p Ji-nl'^O), 

where/gp = (m/trkT)^^^(/igh/d^I)(H/p). The units of the (k,m) 

integrals are (1/d^ ) (m/iykT)^^^. For the electric, field case 

the only nonzero field integrals are 

(3.4) = (^g/20)B(^)(2)'h 

and 

2 
(3.5) . (3fg/l40)h. 

where (k,m) = -(m,k)^ and = (dg/d^kT)(m/2Vl)^^^(E^/p). 

It is convenient to divide the tensors into a field-

off part and a field-on part In the field-off limit, 
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the tensors must be spatially isotropic so that 

for 1=1,2, = x^§^^\ X ̂ = x^É , where é,,. Is the l.ovl-
~  «  I J  K  

5 
Clvlta density, and X =0. The field-on tensors are expanded 

in a complete set of isotropic tensors (of the appropriate 

rank and symmetry) invariant to rotations about the field 
3 • • g 9 3 . 

direction. Hence we have Y = for 1=1,2, Y = .Ky .1 , 
7 I . 9 " r J- - J" 

X = and Y^ = where j\ , and K"^ have 
J J. m. J -J. J '^J w » W 

been defined by Klein, Hoffman, and Dahler (12). The nine 

( 5 ) 
fifth rank tensors, , can be obtained by double dotting 

^ i(2) '^1(2) 
each of the third rank tensors hhh, h W , and (W 

into ^3) (m=lj2) and B^^^(3) (m=0,l,2). Since the 
®ïTi %rn 

(5) 
tensors Y^ are traceless and symmetric on their first 

three indices, the tensors B^^^(3) and B^^^(3) provide a 

convenient method for constructing them. 

Using the linear Independence of the tensors we can 

arrive at a set of scalar equations for the x^ and y^. 

These equations have been solved numerically for certain 

model parameters. The results will be presented in the next 

section where we also compare this exact solution with the 

perturbation solution. 

The zeroth and higher order perturbation solutions are 

given by 

= (2k^T/m)<D,I^°^D), 2.8 

2.9 
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, 2.10 

= (2k^T/m)(B,(I^°^y^^^)^l^°^B>. 2.11 

we recognize that g = + (jt^) is orthogonal to 

for i=3j^,5. Thus for our truncated basis set, we do not 

write I^ in terms of the eigenfunctions of with the 

basis functions and but just calculate the inverse 

directly. (The inverse is much easier to construct than 

the eigenfunctions.) Here = h^^/G, and 

«12^ = where G = ^^^^22 ~ ̂ 12" the mag-

field case the other elements are = I.(l,q) where 
«511 g&l 

f ( l , q )  =  f o r  i = 3 , ^ , 5 .  T h u s  w e  o b t a i n  t o  f o u r t h  o r d e r  

(fourth order since for our models does not contribute 

until then) 

= (k^T/2m)(5x^ + 2x2)g(^\ 2.12 

» u « 

2.13 

2.14 

and 

Xj = { 5 ^ 2 2 / ^  - hj^ 2 /2)/G, 
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Xg = (h^^/2 - 5 h ^ ^ / h ) / G ,  

= (2A/m)(5M^/3h^^ -2M^/h};2,), 

= (2k^T/m)(w^Mg/h^g + a^M^/h^ ), 

2 2 = -w /(1+w ), = 2a^/(l+a^), 

Wg = -3w^(3+^w^)/2(l+w^)(l+4w^)J  a^ = a^/2, 

= -13/6 + 2/3(1+w^) + 3/2(1+w^)^ + w^/2(l+w^)^, 

= -3 + 1/6(1+w )̂ + 1/3(1+4w^) + l/2(l+w^)^ + 

l/(l+w^)(l+4w^) - w^/2(l+w^) - 2w^/(l+w^)(l+'lw^) + 

l/(l+4w^) -4w^/(l+4w^)^, 

= w/6(l+w^) + 2w/3(l+4w^) + w/(l+w^)^ + 

3w/(l+w^)(l+4w^) + 4w/(l+4w^)^, 

W g  =  w(5+8w^)/2(1+w^)(l+ 4 w ^ ), an = -a/(l+a^), 

w = b^(l,2)/hgg^ 

=  - ( 2 k ^ T / m ) P ^ [ ( 5 5 / l 8 ) ]  

a = b^(l,l)/hjij, 

= (2k^T/m)w!P^, 

^3 " '^3^33^^^33' 
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= -(2kVm)P^[(25/2)] 

= (2kVin)wJPi^, 

Pi, = 

w!- = 25/2 + + 2(gJ/i| - g ^ ) / ( l + a ^ )  +  2 g ^ g ^ a / ( l + a ^ ) ,  

Wg = 25/2 + gg - gg + (gg - g^)/(l+a^) -2g2gi,a/(l+a^), 

W3 = 2gggg + 2ggg^/(l+a^) + a(g2 - g^)/(l+a^), 

g^ = w/(l+w^), gg = w/(l+w^) + 2w/(1+4w^), 

g g  =  - w/2(1+w  ) - 4w/(l+4w ), 

= -1/2 - l/(l+w^) - l/(l+llw2), 

g^ = 1 + 3/2(l+w^) gg = l/2(l+w^) + 2 / ( l + 4 w ^ ) .  

For the electric field the elements (for 1,j=l,2) 

remain the same, and the only other terms contributing in 

second order are 

is" = + 4l '  

^ h )  - B(^\2)x^g/(1 + x^g)] 

and 

I#' = + x^j)], 

where = (bg/20) (2hggh^2f bg = (y?g/d^) (m/«kT)^'^^, 
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= (3bg/l40)[8/l5hg^^ and x^g = (5/2)^/^Xg^. Thus 

we obtain for the second-order solution 

= -(2k^T/m)[(Mg/hgg)(x^^ + x \ ^ ) / { l  -

(M^/hJ^)(2x23^)/(l + + Xg^)] 2.15 

and 

= -(2k^T/m)[(M^/h^^)[(x^]^ + X2^)/2(l + xj^ + + 

Xgg/d + Xgg)] - (M^/hJ/|)x23_/(l + x^^ + Xg^)]. 2.16 

We have omitted the field-off solutions, since they are . 

identical with the magnetic field results. No higher order 

solutions have been given either, since we present the exact 

solution in the next section, and since we expect the con­

vergence to be similar to the magnetic field case. 

If we take the saturation limit (E-x*), 

where s = 245h^^/48h]j|j. This is slightly different from 

the magnetic field limit of (1). Thus we see 

that there is less destruction of the tensor polarization of 

W^. Since for our models M^=0, we expect this different 

saturation limit to contribute in higher order. This will 

be seen in the next section where we compare exact solutions 

of both the magnetic and electric field cases. The 
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element 1^9^ does not give a different saturation value 
J 

from the magnetic field case because we truncated the 

expansion set after the term with q=3. The inclusion of 

terms with q>3 would result in a different saturation value. 

Numerical Results 

The objectives of the numerical calculations here and 

for the viscosity are as follows: (a) to find model 

parameters to best fit the available experimental data, 

(b) to understand why good or poor agreement is obtained, 

(c) to attempt some correlation between the simple "disk" 

picture of the rapidly rotating molecule and the mathematics, 

(d) to examine the importance of various expansion terms, 

and to examine the convergence of the perturbation solution. 

It has been shown by Cooper and Hoffman (24) that the 

transport properties are nearly independent of the exact 

type of rigid ovaloid used if the molecules have roughly 

the same dimensions, so we will use both the spherocylinder 

and ellipsoid Interchangeably in our examples. The basic 

parameters of the ellipsoid are R, the ratio of rnajor to 

minor axis, and <<r>, the average cross-sectional area. 

(For greater detail see Appendix A.) For the spherocylinder 

the parameters are S, the radius of the cylinder and 

hemispherical caps, and L, the length of the cylinder. 

Experimental data is available for Ng, CO, and NO, so 

we limit our discussion to these molecules. The quantities 
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which have been measured experimentally are Aq j  , 

, and where ûA = + AXg)/2, 

and 6 Xi = Xg. Bond lengths and rotational g factors for 

these species are given in Table I. The procedure for 

determining S and L for is illustrated in Pig. 1, where 

we have plotted ratios of theoretical to experimental values 

of AQ,yô]_/2 half-saturation), and (the 

saturation value of ). From these plots it is clear 

how we choose optimal values for S and L. This task is 

facilitated by the fact that ^ and ̂  are sensitive 

only to S, i.e., the molecular size,whereas is 

sensitive to the nonsphericity, i.e., L. Thus we observe 

that Xg and mean free path quantities which 

depend mainly on the effective cross section, while 

(/lA/Agis related to the change in the effective cross 

section induced by the magnetic field. Our approach then is 

to use experimental values of Xq and to determine S 

and (AA/AQ)g^^ to determine L. A similar approach can be 

employed to obtain the ellipsoid parameters. 

The experimental measurements of X^^/Xq  have been 

conducted at much lower temperatures than have those of 

z^X/Xg. At low temperatures molecular collisions are less 

energetic and penetrating that at higher temperatures, so 

it is to expected that the collision cross section, and 

hence S, will Increase with decreasing temperatures. Thus 

the values for S determined from high temperature experiments 
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will be unreliable at low temperature. We can follow a 

somewhat similar procedure to that outlined above to 

determine the optimal parameters. 

In Table II we list the experimental values of Xq , 

^Y/2^ •^^'^'^O^sat Mith the theoretical values obtained 

from the optimal choice of S and L (assuming that the exper­

imental values of and ^y/2 equally trustworthy). 

We also obtain theoretical estimates of ^•'•/^o^sat' /^'l/2' 

^"/'^O^sat' compare with experiment when 

possible. Here 6X» Figs. 2-7 show the predicted 

variations in these coefficients with or We have 

also shown the comparison of the shapes of the curves when 

possible. The experimental and theoretical curves are 

quite similar except in the immediate neighborhood of . 

Figs. 2 and 3 also show the effect of which is odd 

in the angular momentum. If this term is omitted from the 

trial function for A, the saturation effect is enhanced by 

about 1.5%. This terra and probably other terms odd in g 

have little numerical Importance for the thermal conductivity. 

In Table III we compare predicted and experimental values 

of (^tp/^o^max* i^ote that the optimal values of S 

are considerably larger than for the higher temperature case, 

as was discussed previously. The field dependence of 

^tp/Ao is shown in Figs. 8-10. Here again the effect of 

is minimal. 

The description of NO is somewhat complicated in that 
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at room temperature NO cannot be accurately described by 

fiund's case (a) or case (b). According to KorviniT () Ihr 

experimental data suggest that NO behaves like a pure 

paramagnetic state with a magnetic moment somewhat smaller 

2 
than the TT2/2 state. We have based our calculations for 

Figs. 6 and 10 on Van Vleck's (26) calculated value for the 

effective magnetic moment. The results are quite good, 

but this is not to say that the description of NO here is 

adequate. 

We can give some quantitative meaning to the simple 

"disk" concept of the rotating molecule by employing the 

Pidduck approximation, where we approximate G by h^^h^^ 

2 
instead of G = h^^h^^ - h^^. We thus obtain for 

^0 ^trans '^rot' 

where in units of k^T/2m = 25/4h^^ - 5h^g/2h^^hgg 

and = l/h^^ - 5h^g/2h^^hgg. The coefficients 1/h^^ 

and 1/^22 9.re related to the relaxation times associated 

with a decay of the terms and , respectively. As 

seen in Fig. 11, these relaxation times decrease with 

increasing R, as might be expected since as a molecule 

becomes more nonspherical at constant <<r> it should suffer 

more collisions. If the detailed nature of the collision 

processes is of little importance and only the frequency of 

collisions is of consequence in the relaxation process. 
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then we would expect that relaxation times calculated using 

an average cross section which holds the frequency of 

collisions fixed should be constant. Such an average cross 

section should be approximately that of a disk formed by 

the rapidly rotating molecule. The curves marked are 

computed holding this disk cross section constant, and they 

demonstrate that this expectation is approximately realized. 

The term represents a coupling between translational 

and rotational degrees of freedom. It is zero for spheres 

and increases steadily with R. A plot of versus 

R (R>1) for the constant disk cross section gives an even 

more horizontal line. This is expected if we interpret 

(representing ^^^or for a magnetic field and for 

an electric field) as a measure of the ratio of the Larraor 

precession frequency to the collision frequency (kept 

constant by keeping the disk cross section constant). 

In the calculation of Aq  and ^•^/2 important 

collision integrals are h^^ and ^^35 respectively, both 

of which have a dominant spherical contribution. Thus the 

value of R can be more or less arbitrarily chosen to determine 

the saturation value. Since the saturation value is the 

only quantity strongly dependent on the nonsphericity, we 

might expect that the good agreement between experiment and 

theory is somewhat fortuitous. As we later find, the 

dominant viscosity integral does not have a large spherical 

contribution, and hence the viscosity provides a more 
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critical test of the model. 

Next we test the convergence of the perturbation 

expansion discussed earlier. We use an ellipsoid model 

2 
with an average cross-sectional area of 3.24#X . (This 

approximates the cross section of diatomic molecules in 

the first row of the periodic chart.) We limit the 

variation of the nonsphericity R to 1.1 and 1.2, since 

these span the range of nonsphericity for most diatomic 

gases. ^ 

In Figs. 12 and 13 we compare the perturbation solutions 

with the exact solutions for only and sinceaAg is 

qualitatively similar to . The comparison of the exact 

solution (omitting & ) with the second and third-order 

contributions gives evidence that the perturbation scheme 

converges rapidly. The fourth-order contribution from 

reduces the third-order result to about the same extent 

as does the inclusion of in the exact solution. Thus 

the small effect of the term odd in the angular momentum 

is well accounted for in its lowest nonzero order (fourth 

order for our model). The convergence is to within about 

1% of the exact solution for third-order contributions with 

R=l.l and about 3% with R=1.2. Thus omitting higher than 

third-order contributions is not of much consequence for 

realistic values of R. 

Finally in Fig. l4 we compare the electric and magnetic 

field results for CO. The saturation values of the 
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electric field case are only about 0.1% larger than the 

magnetic field results and appear the same for the graphical 

scale used. We have also plotted the second-order pertur­

bation solution. For the magnetic field ̂  Is always less 

than Mg, whereas for the electric field Is less than 

at first, and then atyôg=250, becomes less than 4^. 

The shapes of the curves are substantially different, 

although the saturation values are almost Identical. The 

convergence of the perturbation solution seems to be about 

the same as for the magnetic field, so we need go only to 

third order to obtain adequate convergence. The half-

saturation value for the electric field case occurs at 

very high fields. Sparking occurs experimentally before 

such fields can be obtained, so there is no experimental 

data available to compare with the calculations. Since 

our magnetic field predictions are fairly good, the electric 

field predictions should also represent rather closely the 

results of an experiment. 
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Table I. Values of the bond lengths, d, and the rotational 

B factors, 

Gas Np CO NO 

d(A)& 1.098 1.128 1.150 

- 0 . 2 8  - 0 . 2 7  

^Source: (27). 

^Source: (25). 
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Table II. Comparison of experimental (in parentheses if 

available) and theoretical (spherocylinder) 

values for Ag in cal/cm sec deg, and 

^1/2 ^2 CO, for NO). 

Gas Np CO NO 

L(Â) 

S(&) 

A  1/2 

1/2 

^ \ / 2  

0.52 

1.884 

5 . 2 8  
(6.0)^ 

8.04 
( 7 . 9 ) ^  

- 3 0 . 3 3  _  
( - 3 4 . 5 1 )  

6 . 4 0  

-39.15 

9.67. 
( 1 0 . 5 )  

-25.18 

a 

0 . 5 3 3  

2.04 

4 . 5 3  
( 5 . 4 5 )  

8 . 2 6  
( 8 . 2 0 ) ^  

- 3 3 . 8 8  
(-41.04)^ 

6 . 5 8  

- 4 2 . 5 0  

9.93. 
( 1 0 . 5 )  

-28.09 

0 . 5 1  

1.74 

5 . 9 3  _  
(5.74)®-

6.76 
( 6 . 7 5 ) ^  

3 6 . 3 7  _  
( 3 5 . 2 0 ) ^  

5.39 

47.18 

8 . 1 3  

30.16 

^Source: (25). 

^Source: (28). 
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Table III. Comparison of experimental (in parentheses) and 

theoretical (spherocylinder) values for Aq in 

cal/cm sec deg, 

Gas 
^2 

CO NO 

L( X )  0 . 5 5  0 . 5 0  0 . 4 0  

s ( A )  2 . 6 5  2.7 2.7 

Aq XIO^ 1 . 4 1  
(1.7)^ 

1 . 3 6  
( 1 . 5 8 ) ^  

1.37 ̂  
( 1 . 6 7 ) ^  

5 . 2 8  
( 5 . 1 4 ) °  

3 . 8 7  .  
( 3 . 6 6 ) °  

1.72 
( 1 . 6 2 ) °  

/^max 
- 4 8 . 2 5  ^  

( - 5 8 . 3 9 ) °  
- 4 6 . 2 5  g  

( - 5 3 . 6 5 ) °  
1 0 4 . 5  _  

( 1 2 4 . 8 ) °  

^Source: (29). 

^Source: (30). 

^Source: (31). 
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S  ( A )  

Fig. 1. L is in angstroms and (X)p = ^calc^^exptl 
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10° lo' 10̂  10̂  10̂  

Fig. 2. (Ng) The dashed line Is (^^/Aq ) calculated without the Wg 

term and the solid line is (aX/Aq) calculated with the 

term. The dotted line is the experimental with the 

error bars indicating the spread of experimental points. 



www.manaraa.com

o 

9 

8 

7 

6 

5 

4 

3 

2 

I 

0 
10 10 10 10 10 

Pig. 3. (Ng) The upper curves are (•û^x/Xq ) and the lower curves are 

(aXw/Ag). The dashed lines refer to the calculation without 

the term and the solid lines to the calculation with this 
t e r m. 
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Fig. 4. (CO) The solid line is the calculated (ôX/Xq ) and the dotted 

line is the experimental (AÀ/x^). 
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Fig. 5. (CO) The upper curve is the theoretically predicted ) 

and the lower curve Is (aX, i /Aq ). 
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Pig. 6. (NO) The dashed line is the calculated (aA/A^) for the pure 

paramagnetic gas, the solid line is the calculated (4>>/A ̂  ) 

for the gas with a reduced magnetic moment, and the dotted 
line Is the experimental (aX/Aq). 
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(NO) The upper curve Is the theoretically predicted 

and the lower curve is /A ̂  . 
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Pig. 8. (Ng) The dashed curve Is (X^^/Aq ) calculated without Wg and 

the solid curve is (X^^/Aq) calculated with WQ. The dot 

denotes the experimental maximum. 
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10"^ 10' 10^ 10- 10 

Fig. 9. (CO) The solid curve is the calculated the dot 

denotes the experimental maximum. 
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Pig. 10. (NO) The dashed curve is (X^^/Xq) calculated for the pure 

paramagnetic gas and the solid curve is calcu­

lated for the gas with a reduced magnetic moment. The dot 
denotes the experimental maximum. 
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h22 

Fig. 11. The solid curves give A ̂  for constant ellip­

soid cross section and the dashed curves for 
constant disk cross section (see text). 
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4.0 

-AX 

3.0 

2.0 

O 
K 

<3 

0.0 

Fig. 12. The ratio R=l.l and aX is in units of (k T/trin) /2d . 
The dotted curves are the second-order calculations and 
the upper dashed curves are the third-order calculations. 
The lower dashed curves are fourth-order contributions 
from WQ, the solid curve is the exact three-term calcu­
lation, and the exact four-term calculation coincides 
with the upper dashed curve. 



www.manaraa.com

i 

3.0 

AX 

2.0 

ro 

AX 

0.0 

Fig. 13. Here R=1.2. and the exact four-term calculation is the 
lower solid curve. Otherwise the curve identification 
is the same as for Pig. 12. 
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Fig. l4. The dotted lines are the magnetic field coefficients 
and the other curves are electric field coefficients. 
The dashed curves are the second-order calculations. 
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VISCOSITY 

Kinetic Theory 

The pressure tensor P for a dilute gas with no vlsco-

thermal coupling Is given by 

Ê = jdcm(v-u)(v-u)f(l) = nkTg(^) - 2kT<f^°^WW,B)0^|^. 3.1 

Recognizing p=nkT as the hydrostatic pressure, we can rewrite 

equation 3.1 as 

P = ps'l' - kT(J<l'<Di,B> + 3.2 

Where = f^°^ilW^/15 - 2Q^/5) and Dg = 2f^°^WW. Since 

there Is no term on the left-hand side of the Boltzmann 

equation proportional to the antisymmetric part of we 

can write the pressure tensor as 

P = - kTfDg,H/@^S - (kT/3)(D -
m #  ^  C .  m .  m ,  J .  m »  ^  %  

kT<D^,§>8^§§(^)  _  (kT/3)<B2,B)0^g(^)^'U,  3 .3  

where S = (1/2)[|^ + (|^)^] - (1/3)^'U§^^^. If we cast P 

In the standard linear phenomenologlcal form, 

P = p|<l) . 2JO2J .K^.U|<1' + Lj;2)a2g;Xl) + 

3.1 

we can Identify the shear and bulk viscosities,^ and K, as 
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= (kT/2)fg2,B> 3.5 

and 

K = (kT/3)(D^,B>0^8(^\ 3.6 

A coupling of shear and bulk viscosity effects exists through 

the coefficients and which are given by 

Lj02) . -kT<D^,g> 3.7 

and 

= - (kTV:! XjDg 1). 3.8 

The coupling coefficients obey the Onsager relations 

^ (]3) = (-#) ' (See Aipperidlx B. ) 

As in the case of the thermal conductivity, we expand 

B in irreducible Cartesian tensors as follows: 

s = p,qfs,tS^:l/2<«')S<'>(Q2)[Wj(P)[9]'«>0 3.9 

where now the are the expansion coefficients. The 

subsidiary conditions require that 

gOOOO =  gOOlO (2 /3 )B°001^  3 .10  

and that p must be even. We now obtain expressions for the 

transport coefficients in terms of the expansion coefficients 

as follows: 

^ = (kT/2)(B^°°° -(l/3)B^°°°o^|(^)§(^)), 3.11 
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= -(kT/3)B^°°Vs^^\ 3.13 

and 

1^(02) ̂  kT(B°°l° - (1/3)B»°"O26(1'5(1'). 3.14 
%  w  t r  %  m " > 2  

The problem of truncation here Is somewhat different 

from the thermal conductivity case because of the coupling 

between the shear and bulk viscosities. However, we might 

expect that q=2 terms again give the dominant field effect. 

Indeed we find that the p=0,q=2 term is dominant for the 

shear viscosity field effect, and that the p=2,q=2 term is 

dominant for the bulk viscosity and coupling coefficients. 

The simplest expansion set which includes one term odd in 

the angular momentum and yields nonzero values for all the 

viscosity coefficients is then 

s r ' l a  a 2 » « 3 »  « 4  =  

f 3.15 
ts 0 ~ 

where 

= (3/2 - W^) - (3/2)(l - Q^), 

t2  '  #3 = 

I, = 
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The solution of Boltzmann's equation for this expansion 

set can be reduced to the solution of a set of sixty scalar 

equations. Since this is a rather large number of equations 

to solve exactly, we limit our considerations to the pertur­

bation scheme. However, we do solve exactly the twelve 

equations for using only the most important terms, and 

, in the expansion. These results will be presented 

graphically in the next section. 

Since there is only one term for each set of p,q values, 

the matrix elements of I^ can easily be calculated from 

equation 1.33. We have (for the appropriate p and q) 

for i=l,2,3, and f^^\p,q)=bK for i=4,5. The 

b^^ are defined in Appendix A along with the collision inte­

grals, b^j = )) . We now give the perturbation 

results to second order. The higher order results are 

extremely cumbersome and will be presented graphically in 

the next section. As before, the term odd in the angular 

momentum does not contribute until fourth order for our 

models. We have 

= (kT/2)(D2,(l(°y^))"§g) , 3.16 

3.17 

, 3.18 

and 
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= -kT<D^,(I^°y^^)"§2>. 3.19 

Thus for zeroth and second order (all first-order results 

being zero), we have 

=  0 ,  3 . 2 0  

(0)k = = kT/b^^, 3.21 

= (kT/2b22)g(^\  3 .22  

(2)^(20) ̂  (2)^(02) ̂  _(kTz/2)(hh - (1/3)|^^^), 3.23 
g-TTF gf nH 55 

3.24 

and 

3.25 

Here the subscript zero indicates the field-off limit, 

= 5kTb^,/b^^bJ,, 

= (kT/2) (N +7NV12 -3N'72) .  

= 4?iB(a)(2) + /172B<®'(2) + <173B<®'(2) + 
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N = N' = bg^/bggb 

= (kT/2)(N. + N| + Np, 

Ni = 0, 

= -(1/12)N' (Z^2| + 16Z22|), 

N;[ = (3/2)N"z^^, 

N2 = -Nz^3, 

= -(l/24)N'(7z^^ + 22lZg^), 

= (5/4)N"z^^, 

N g — —4NZ 2g, 

= - (1 /12)N'  (3z^^ +  8z^;^) ,  

=  ( l /2 )N"z^^,  

Nf, = (l/24)N'(5z^i| - 12z^i,), 

N)| = _(l/4)N"z^^/z^, 

= 2Nz^yz^, 

= (1/24)N'(6Z^^ + 8z2i,), 

= -(l/2)N"z^^/z^, 
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= z!/(l + for 1=3,4,5, 

Zg = b^(0,2)/bgg, 

2/| - b^(2,2)/b^2|) 

and 

= b]^(2,l)/b^^. 

We now consider the shear viscosity separately and 

enlarge the basis set with additional terms In the dominant 

( 2 ) ( 2 ) 
tensors [W] and [Q_] , since, as It will be shown In the 

next section, the expansion set given by equation 3.15 does 

not give good agreement with experiment. The truncated set 

used to determine the effect of additional Sonlne polynomials 

is 

B = + (<„O2B2»»1 . . 
a = (=1 * 3 « X  s t j l  = 

/ o2g0210 ̂  ̂  2g0201 3.26 
-32 a «33 « ' 

where fjris. ;^23=<l-«^>i'21' 

^g2=(3/2-W^)^g^, and j^23=(3-Q^)if22* The effect of the poly­

nomials is shown graphically in the next section, and the 

pertinent integrals b^^. are tabulated 

in Appendix A. 
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For the electric field shear viscosity problem we use 

the expansion terms g, and . The latter 

two do not contribute in the magnetic field case. We obtain, 

to second order in the nonsphericity, the same result as be­

fore for the shear viscosity if we set N'=N"=0, 

and replace ^.nd by 

= - (kT/2)N(y^^ +  y^^) / ( l  +  y^^ +  y^^)  3 .27  

and 

= - (kT/2)Nygg/ ( l  +  ygg) ,  3 . 2 8  

where y^^ = (bg/10)(2bggb^^)''^^^, y^^ = (3bg/70)^(8/15b^^byy.), 

2 2 / 
and ^22 ~ (5/2)y2^. The index 6 refers here to and 

the index 7 refers to . We observe that the 

saturation limit here is the same as for the magnetic field 

case. This is a consequence of the limited expansion set 

and the fact that g does not couple with . In the next 

section we present the numerical results of the second-

order solution and those of an exact solution. 

Numerical Results 

Experimental data is available only for the shear 

viscosity coefficients, for which we limit our considerations 

to the prototype N^. For the five shear viscosity coeffi­

cients of Ng (in a magnetic field), we show in Fig. 15 a 
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comparliuon of the theoretical (using only and 

results with the experimental results of Hulsman (32) and 

Hulsman et al. (33). The ellipsoid parameters are R=1.075 

and <<r> =3.4225fl^S^ J and the viscosity coefficients are 

given in the scheme of de Groot and Mazur (34), whose 

viscosity coefficients are related to ours by 

rt{ =  V3 = ^ 2 '  

7}/, =-^^, and = -74, 

where the prime denotes coefficients in the scheme of 

de Groot and Mazur. The magnitudes and shapes of the curves 

are quite similar, but the theoretical maxima and half-

saturation values occur at a value of which is an 

order of magnitude too low. The discrepancy could con­

ceivably be eliminated by enlarging the expansion set. 

This problem is considered in conjunction with the pertur­

bation solution. 

In Pigs. 16 and 17 we show the shear viscosity coeffi­

cients as functions of/3 for or>=3.24?#^ and R=l.l and 1.2. 

Here we have included all the expansion terms. Only 

the second-order results are shown, since the third-order 

contribution is at most only about 0.4^ lower than the 

second-order, indicating that the convergence Is very 

rapid. The fourth-order contribution from only raises 

the third-order contribution by at most 0.01%, so this 
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term 1:: nep/lible. The effect of is also very umall. 

Its contribution is less than 1%, but it does make 6"^^ 

nonzero. However, this coefficient is a factor of 100 

smaller than the maximum value of the other coefficients 

and would appear simply as 69^^=0 on the graphical scale 

shown. 

For this same expansion set we show in Pigs. 18 and 19 

the change in the bulk viscosity, the coupling 

coefficients as functions of the field. The convergence 

is not as rapid as with the shear viscosity. For àK the 

third-order contribution lowers the second-order result by 

about 15%, while the fourth-order contribution from is 

graphically negligible on our scale. The third-order 

contribution tends to destroy a "hump" present in the 

second-order expressions for the coupling coefficients, 

and it lowers the second-order contribution by about 10^. 

In Figs. 20 and 21 we show the results of the shear 

viscosity using the additional Sonine polynomials. Only 

the dominant, second-order contribution is shown. We see 

that the additional polynomials have little effect as was 

also found in the rough-sphere model calculations of McCourt, 

Knaap, and Moraal (l4). Hence we are unable to improve 

the agreement between experiment and theory by enlarging 

the expansion set. The dominant term has no large 

spherical contribution associated with its collision 

integrals. Presumably, this means that a better molecular 
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interaction model is required to obtain satisfactory 

agreement, and hence that the viscosity offers a critical 

test of the model. 

In Fig. 22 we compare the shear viscosity of CO for 

the electric and magnetic field cases. We only plot the 

exact solution since for the graphical scale used, it is 

indistinguishable from the second-order solution. We 

use the same R and <<r> values as for the thermal conductivity. 

We do not expect these results to agree with experiment 

for reasons discussed previously. However, the magnitude 

could be fit experimentally for CO but not the half-

saturation value of p. Finally we note that the order in 

which and 47^^ reach saturation is reversed from the 

order found in a magnetic field. 
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Pig. 15. The dashed curves are the calculated values of the five 
shear viscosity coefficients as functions of The 

solid curves are the experimental viscosity coefficients 
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Pig. 16. The change in the shear viscosity,^7^, is in units of 

(inkT/Tr)^/2/2d^ and R=l.l. 
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Fig. 17. The shear viscosity is for R=1.2. 
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Pig. l8. The bulk viscosity is given in units of (mkT/ir) /2d . 

The upper curves are for R=l.l and the lower curves are 
for R=1.2. The dotted curves are the second-order cal­
culations and the dashed curves are the third-order cal­
culations . 
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Pig. 19. The coupling coefficient Is in units of (mkT/'T) /2d . 

The upper curves are for R=1.2 and the lower curves are 
for R=l.l. The dotted curves are the second-order cal­
culations and the dashed curves are the third-order cal­
culations . 
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Fig. 20. The shear viscosity is given for R=l.l. The dashed 
curves are coefficients calculated using the additional 

Sonine polynomials in and and the solid curves 
are without these polynomials. 
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Pig. 21. The shear viscosity is given for R=1.2. The curve 
identification is the same as for Fig. 20. 
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Pig. 22, The dashed curves are the magnetic field viscosity 
coefficients and the solid curves are the electric 
field coefficients. 
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APPENDIX A. COLLISION INTEGRALS 

Here we outline the procedure for performing the angle 

and surface Integrations of the collision Integrals for the 

ellipsoid and spherocylinder models. The collision integrals 

($^,1"^), representing h^^ or are defined by 

= jde^de2{dk4(k,e^,e2)^^^^J), A.l 

where 

_ _(2Trn)~^ e^)S(M2-e2)k'gf^^ 

X + | J  ] .  

k-g>0 k'g<0 

A prescription for evaluating the ^ has been given by 

Hoffman (20), and hence will not be given here. First we 

discuss the geometry of rigid convex bodies and then that of 

spherocylinders. This will allow us to obtain explicit 

expressions for the surface and orientation integrations. 

Lastly we tabulate all the collision integrals in terms of 

their integrands, which are obtained by taking certain con­

tractions of the 

Geometry of Rigid Convex Molecules 

A point on the surface of a specified convex body of 

fixed orientation is uniquely determined by the unit vector 
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k, which is normal to the surface at the point. We define 

the supporting function h(k) by 

h(k) = f'k, A.2 

where f is a vector from the origin (arbitrarily chosen) to 

the point on the surface. If we let 0 and 4 be the usual 

spherical polar angles of k, defined with respect to some 

z-axis in the direction of a unit vector e, then 

#  = % k + f #  '  f#  »-3  

and 

'4 ' ' 4̂ - ?4-

A 

since any Infinitesimal change in ̂  is perpendicular to k. 
A  A  

Now ̂  =® and ^ sine, where ê and ̂  are unit vectors 

A 
orthogonal to k and each other. Thus we can write as 

f = kh + e(;P'^) + ̂ (f-^ ) = kh + ©|^ + ($/sin<»)|^ A.5 

or 

f = kh + A. 6 

where 

(f/5lne)^. 

( 2 )  
The element of surface area, S , on the body Is given 

per unit solid angle by the determinant of in the subspace 
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normal to k. This quantity can be expressed as follows: 

S = -(1/2)G©^G A.7 

where 

G = h' A.8 

and 

vr = e(p - <j)e = _kX&^ ^ 
ak » 

A.9 

C 2) 
The criterion for convexity is that S be nonzero. 

At any given instant two rigid convex molecules can at 

most be in contact at a single point, and at that point their 

surface normals are antiparallel. The volume excluded to the 

center of mass of the second molecule by the presence of the 

first (both molecules held with fixed orientations) is itself 

a convex body. The vector,^, to a point on this surface, 

measured from the origin of the first molecule, is given by 

^ - fg. For convenience we have taken the origin of 

each body to be its mass center. The supporting function 

h (k) (the normal to this excluded volume being parallel to 

k) of the excluded volume is given by 

where it is understood that these quantities are functions 

of orientation as well as of k. 

For molecular models with Qoa symmetry, the supporting 

A 
hx(k) = h^(k) + hgC-k) A. 10 
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A 

function Is only a function of the angle between k and the 

symmetry axis, since h, the projection of ̂  on k, is invariant 

to rotations about the symmetry axis. Hence, if we choose 

e to be along the symmetry axis, then ç becomes 

jp = h(x)k + eh' (x), A.11 

where x=k-e, kk, and h'(x) = dh/dx. The last 

term of equation A.11 arises from a change of variable, 

A = ®a(? ê ï '  

The supporting function for the excluded volume then becomes 

h^ = h(x^) + hC-Xg) = h^ + hg. A.12 

If we now evaluate the surface element of the excluded volume, 

we obtain 

= -(1/2)G0^G = g2 + g[(l-x^)hj + (l-Xgih^] + 

(l-x^)(1-X2)sin^ h^h^, A. 13 

where o( is the angle between the projections of e^ and e» in 

the plane perpendicular to k, g = h^ - x^hj^ + x^h^, and 

h"(x) = d^h/dx^. 

The projection of a convex body onto a plane is itself 

a convex figure. For bodies with Coo symmetry the supporting 

function, hp, for this plane figure is given by 
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hp(n'ej_) = ~ h((n'ei)(l - (e-a)^)^^^), A.l4 

where n is a normal to the perimeter of the projection and 

A ^ A 
equals k for all points on the body such that k*a=0. Here 

a is a unit vector normal to the projection plane, and 

êi = (e - (ê'â)â)/(l - (e-â)^)^'^^ 

A 
is the unit vector along the projection of e in the plane. 

If is the angle between n and e , then the projection 

of f in the plane, is given by 

S = "hp +û^hp = nhp +^hp. A. 15 

Thus the element of arc length, is given by the deter­

minant of ̂  in the subspace normal to n, or by 

" '^p l^'^p • 

The area, (r'(a), of the projection is given by 

o-(a) = (l/2)JdnS^^^hp, A.17 

and the average cross-sectional area, <cr> , is 

«r> = (4ff)-ljda<r(a) = (8^)-^j'dâJdkS(â'k)h(x)[h(x) -

xh'(x) + (1 - x^ - (a-e)^)h"(x)]. A.lB 

This expression can be simplified to give 

<c> = ('n'/2)Jdxh(x)[h(x) -xh' (x) + (l/2)(l-x^)h"(x)]. A.19 
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We are now In a position to carry out the surface and 

orientation integrations of the collision Integrals for 

rigid, convex molecular models with Coo symmetry. The 

supporting function for the ellipsoid of revolution is 

h(x) = [a^ + x^(b^ - A.20 

where b Is the length of the major axis and a is the length 

of the minor axis. For a loaded ovalold, i.e., the mass 

center is shifted along the symmetry axis from the geometrical 

center, 

hj^(x) = h(x) + 6x, A.21 

where Se is the vector from the shifted center to the orig­

inal center. The two molecular parameters, a and b, will 

often be replaced by R = a/b and <<r> in our considerations, 

since R gives a measure of the nonsphericity and «r> is a 

measure of the effective cross section or "size". For the 

prolate ellipsoid 

<o-> = TTa^/2 + irab^tan~^[(b^-a^)^/^/a]/2(b^-a^)^^^. A.22 

Hence, for any desired "size" and nonsphericity, we can 

obtain the appropriate a and b. 

Since ^ we can rewrite as 

I I aif 

= 8Tf^JdxJdxJdc4s(^)(x^,X2,4)^(^'^)(x^,X2,o|).A.23 

The integration over cj can be done analytically, since the 
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supporting function does not depend on c(. The remaining 

integral cannot, in general, be done analytically, and hence 

must be calculated numerically. A similar formula for 

) can be obtained for the loaded spherocyllnder. Since 

the spherocyllnder and its excluded volume are not convex, 

the form of the equation is more complex. However, the 

resulting numerical calculations for the transport coeffi­

cients using the spherocyllnder model are only slightly 

different from those using an ellipsoid of the same "size" 

and "nonsphericity". A detailed analysis of the sphero­

cyllnder collision Integrals has already been given by 

Klein et al. (l8), so the spherocyllnder formula for 

will not be given here. 

Tabulation of Collision Integrals 

The tensors h.. and b.. are linear combinations of a 

set of linearly independent Isotropic tensors. Here we give 

the required expansions along with explicit expressions for 

the expansion coefficients. The necessary isotropic tensors 

are given in the next section. The tensor integrals are 

t t 
related by h..=h. and ^ ^, so only the integrals for i^j 

will be given. This relationship differs from that of 

Hoffman and Dahler (17) in the definition of the transpose. 

For integrals odd in Q, they give the relationship with a 

minus sign. 

The collision integrals are expanded in isotropic tensors 
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follows : 

blj = 1,J=1,2, 

fili| = h.,| 1=1,2, 

È15 = 0 1=1.2,3, 

hi3 = = ' 1=1,2. 

hjj = 

fell ° 

bw = + h^^jC", 

&45 = 

655 = "551"'^^' 

bli = 0 1=2,3,5, 

fcl3 ' "ijl'" l.J=2'3. 

kl = "lHïi®' 1=2.3. 

&15 = "isîî^' 1=2.3. 

&W = + b2,Tf ) + b3,|(8) + bJ,T(8' + b5,T(8), 

^51 ' "51$^' + "stï^" + "snî"'. 
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§61 = ° 1=2,3,7, 

=66 ° '=66%^^^' 

^7i = 0 1=2,3,6, 

«77 " ̂77«^^^' 

and 

h - h &(2) 
Elj,km " °lj,kml • 

The scalar parts of the collision integrals are linear 

combinations of the Integrals 

I I ^ 

TI = (2ir)"^Jdx^jdX2JddS^^\x^,X2,ol)TI, A.24 

where 

Tl = 1/D, T2 = l/D^, 

T3 = a^(k.êg)^/D5, T4 = a^/D, 

T5 = a^/D^ T6 = a^/D^, 

T7 = (a^- ̂ 2)^/D^ T8 = aJ/D^ 

^ Ij c ^  h  7  
T9 = aJ/D^, TIO = a^/D\ 

Til = (a^- T12 = (a^.a2)^/D^, 
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T13 = (a^. §2) W, 

TI5 = a^a^/D^, 

T17 = (k-e^)^/D, 

A. .0 ^ P Q 
TI9 = (k'e^)'^(k'e2) /D^, 

T21 = (k.e^)k'(e^^Xa^)/D^, 

T23 = (a^. 62)^/0^ 

T25 = a^{k-e^)^/D^, 

T27 = (k'ê^)k-(e^Xa^)/D^, 

T29 = (k'e^)^(k-e2)^/D, 

T31 = I/D"^, 

T33 = (k'e^)^/D^, 

T35 = a^/D^, 

T37 = aJ(k'e3_)VD^ 

T39 = a^ajCk'e^)^, 

T4l = a^/D\ 

T43 = aJaj/D^ 

Til5 = a^(a2. e^) V, 

Tin = a^ag/D^, 

T16 = a^ag/D^, 

TI8 = (k-e2)^/D^, 

T20 = (k'e^)VD^ 

T22 = (e^- 62)^/0^ 

T24 = a^(k'e^)^/D^, 

T26 = aj(k*62)^/0^, 

T28 = 1/D^, 

T30 = (6^-62)^/0, 

T32 = (âi-62)^/0, 

T34 = aJa^Ce^- e ^ ) ^ / D ^ ,  

T36 = a^(a2'e^)^/D^, 

T38 = a^/D\ 

TifO = aJa^/D^, 

T42 = a^a2(a^-62)^/0^ 

T# = a^a^(a^. ag)^, 

T46 = a^(a^*62)^/0^, 
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T47 = (%" a2)^/D, T48 = aJa^/D"^, 

T49 = (&2' Sg) (§2' 

T50 = (a.]^' eg) (a^g- e^) (e^ e^)/ï>^, 

D = (1 + a^ + 

a. = (m/2I)^/^^^xk. 

1/2 
The collision integrals in units of (TfkT/m) are 

h^^ = (15T1 - llT2)/6, 

hp2 = (T1 + 6T4 - 6T8 - '!T5 + 27T9/4 - 27T15/4)/3, 

h^2 = -5T5/3, 

h^3 = -2T5/15, 

hgg = -(Tl/3 - T17 - .5T24 + .5T26 - 4.5T9 + 8T5/3 + 

4.5T15)/10, 

^14 = = 0, 

hL = (-12Z1 + 11Z2)/210, 

Z1 = 14T4/3 + 19T1/18 - T17/3 - 8T8/3 - 26T5/9 + 7T24/3 

.5T29 - T26/3 + 1.5T9 - 1.5T15, 
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Z2 = 17T1/6 + 14T4 + 9T9 - 8T8 - 28T5/3 - 13.5T12 + 

T23 - .5T30 + 4.5T15, 

33 " 
hL = (6Z1 - 2Z2)/35, 

= k)^/^T27/30, 

= (224 _ Z3)/15, 

•Z.3 = .5T1 - .5T17 + T4, 

Z4 = T1 + 3T4 - 2T5, 

= (3Z3 - Z4)/15, 

= (.2T1 - .6T17 - .5T5 - 1.1T24 + .4T8)/7, 

hcc = (18T4 + 2.4T1 - 17.1T8 - 11.4T5 + 19.05T9 + 8.1T35 -

12T38 + 3T50)/21, 

= 6.5(T1 - T2), 

b^2, = (-T1/3 + T2 - 2T28/3 + 2T17 - 2Tl8)/4, 

bgg = 2T1/3 - 4T2/15, 

bg^ = (i4tV3 - 8t8/3 - 4tii + 4TL4/3)/5, 

bgg = 2(T1 - T2)/15, 

BGI, = (7T1/6 - 7T5/6 - 3.5T17 - 2T2/3 + 2TL8 + 4T6/3)/L40, 
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b^ii = (2.5T5 - 5.5T24 - 2T23 + 4T9/3 + 4T12 -

8T15/3)/140, 

^25 = = 0, 

^ 3 5  " ('^)^^^T27/60, 

bjij = (13R1/24 + 5R2/3 - 5R3/24 - 2R4 - .5R5)/105, 

= (19R1/6 + 13(R2 + R3)/24 - 3.5(R4 + R5))/105, 

= (13R1/24 - 5R2/24 + 5R3/3 - .5R4 - 2R5)/105, 

bj^ = (-7R1/2 - R2/2 - 2R3 + 4R4 + 8R5)/105, 

= (-7R1/2 - 2R2 - R3/2 + BRU + 4R5)/105, 

R1 = PI - 2P2/3 + F3/9, 

R2 = pi} - P5/3 + P3/9, 

R3 = F9 - 2P6/3 + P3/9, 

R4 = Pll + SB, R5 = PIO + SB, 

SB = -2(P7 + F8)/3 + 2(F6 + P2)/9 + F5/9 - P3/9, 

PI = 8(T1 - T17 + Tl8) - 3T20 - T19 + 16(T4 - T5) + 

12(T24 - T8) + i|(T26 - Tl4 - T2), 

P2 = 8TI - 8T17 + 20T1 -  6T2 - 20T8 + 6Tl8 - 16T5 -
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F3 = 16T1 + 6T4 - 12T2 - 60T5 - 60T8 - 36T14 + 30T9 + 

11T6 - 24T15 - 6OTI6 - 60T10, 

F4 = 32T1 + 90Ti} - 9T2 - 9OT5 - 6OT8 - T22 + 4T23 -

12T11 + 32.5T6 + 100T9 - 8T12 + 4T7 - 6OTIO - 60T13, 

P51 = 16T1 + 90T4 - 9T2 - 5OT5 - 60T8 - T22 + 12T23 -

36T11 + 32.5T6 + 30T9 - 6OTIO - 60T13 + 4T7 - 24T12, 

P52 = 32T1 + 60T4 - 12T2 - 6OT5 - 60T8 - 12T14 + 100T9 + 

11T6 - 8TI5 - 60T10 - 6OTI6, 

F5 = F51 + F52, 

F6 = 8T1 - 8TI7 + 2T4 - 20T8 - 6T2 - 4T5 + 6TI8 - 12T14 -

2T24 - 4T9 - 4T6 + 2T25 + 2T3 -  4T15, 

F7 = 8T1 - 8TI7 + 30T4 - 5T2 - 6.5T5 + 6TI8 - TI9 + 

2T23 - 9.5T24 - 20T8 - 12T11 + 27(T6 - T25)/4 -

4T9 - 4T12, 

PB = 14T1 - IOTI7 + 20T4 - 6T2 + 3.5T18 - 7.5T5 + 6T24 + 

6T26 - 20T8 - 4T14 - 27T9/4 - 4T6 + 2T25 + 2T3, 
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F9 = 8TI - 8T17 + l6Ti| - 4T2 + 8T18 - 3T20 - T19 -

2T8 - 8T5 + 8T24 - 4T14, 

FIO = 8TI - 8T17 + 16T4 - 4T2 + 8T18 - 3T20 - T19 - 2T8 -

2T5 + 2T24 - 4T11, 

Pll = 14T1 - 10T17 + 30T4 - 5T2 + 6T8I8 - T19 - 20T8 -

mi - 20T5 + 9T24 + 13.5T9 - 27T25/4 + 27T6/4, 

= -('rt)^/2(ll|T27/3 - 2T21)/70, 

^5i| " "^54' 

= (-12AS + 11AT)/210, 
55 

= (6AS - 2AT)/35, 

AS = 10TV3 + 47T1/18 - 7T17/6 - 26T5/9 - 5T2/9 + 

T18/3 + 0.75T6, 

AT = 10T4 + 20T1/3 - 4T2/3 - 40T5/3 + 4.5T5, 

BGG = 2TV3, 

byy = (12T4 - 11.4T8 + 5.4T35 + 3T99)/7, 

^21,22 ^'^^22 " 

XI = (35T1/3 - 3.5T2 - 2T28/3)/5, 
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^21,32 ̂  ̂ '5^23 ~ 

X2 = (7T1/3 - 5T2/3 - 2T28/3 - 2T17 + 2Tl8)/10, 

b3i 22 = S.Sbgg - X3, 

X3 = (14T5 + 2T6)/15, 

^31,32 " 

X4 = (14T4 + 2T23 - 8T8 - 12T11 + T5 - 8T9/3 - 4Ti2 + 

4T14 + 4T15/3)/10, 

^22 22 " - 7X1 + (385TI/6 - 91T2/3 + 185T28/24 -

8T31)/5, 

^22,32 " - 3.5x2 - 1.5x3 + (7T1/6 - 3.5T17 -

T2 + 3T18 + 49T4/6 - 7T5/6 + 5T6 - T28/6 + 

T33/2)/5, 

^^32,32 " - 3X4 + (P51 - P3)/5, 

^21,23 ^22 " 

X5 = (25T1/3 - 17T2/3 + 4T28/3)10, 

•^21,33 " ̂"^23 " 

X6 = (10T4/3 + 2T24 + 4T9/3)/5, 
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^31,23 " ̂23 " 

X7 = (2T5 + 4T9/3 + 4T15/3)/10 

^31,33 " ̂ ^33 " 

X8 = (#TV3 - 5T8 - 8T35/3 + 10T14/3 + 4T15/3 -

14T11 + T12 + T36)/5, 

^^22,23 = 3.5b22 - XI - 3.5X5 + (35T1/3 - 7T2/2 -

143T28/12 - 55T5/3 + 133T6/12 + 25T31/4)/5, 

^22 33 " 10-5^23 • 3- 3X3 + (35T5/3 + 7T24 + 

5T6/3 + 7T9/3 + T25 + 5T10)/5, 

bg2 23 = 1-5^23 " - X2 + 0.2(P6 - P3/3), 

^32 33 " ̂-5^33 - 1-5X8 - 3X4 + (22T4 _ 5T5 - 23T8/3 + 

229T9/12 - 4T35 - 20T38 + 3T23 - T30/4 - 15T11 + 

5Tl4 + 3T36 - 3T12 + 5T15/3 + T45 + T46 - 3T47 + 

15T12 + 2T4 + 10T48)/5, 

^23,23 = ^22 - 2X5 + 0.2(F52 - F3/3), 

^23,33 = 3b23 - X6 - 3X7 + (25T5/6 + 2.5T24 - 6T9 + 

T37 + 10T38 + 5T15/3 + T39 + 10T48)/5, 
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. 33 = - 6x8 + (76T4 - 218T8/3 + 409T35/6 -

40T41 + 25T14/3 + 6T36 - T3^ - 48T11 + 12T12 + 

20T40/3 + 4T42 - 60T# + 20T43)/5. 

Isotropic Tensors 

Here we list the pertinent isotropic tensors needed for 

the collision Integrals listed in the previous section. They 

are given in terms of U's, where Poi'' example 

^ljkm~^lm^jk' tensors are as follows: 

= U , 

= (l/2)[ + UJ ] _ (1/3)UU , 
a  

g(l,2) ̂  {1/2)1 ] - (1/3)UUU , 

= (1/8) [ + <jLSO + + 

\sHdJ + ; + vW ] -(l/6)[u + U[SJ + 

Vi^u + U6/U ] + (i/9)uuu , 

I iMJ + yU + HLU + l&LU ], where LU =é, 

gd.l) = ̂  , 

= (1/2)[ UU + UU ], 

= (l/6)[ Liuy; + + U5^ + + 
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] - (1/15)[ + uuD + U + ofU 

liAi) + + ^MSU + UUU ], 

= (l/6)[ \^ + + [j0J 

] - (1/15)[ ULUUJ + UiL^ + 

tuuju + ua&i V + ^UUJ + tyuuj + 

yyu^l) + u^irisL; + u\y^u ], 

= (l / 8 ) [  viUL/ +  ^  ^  

+ vi^L/ + ] - (i/6)[ uku; + vud + 

\^U + WU + VI^ + UÈV ] + (2/9)UUU , 

= (l/4)[yLl + HLU + UiLl + IHU ], 

S(2,2) ̂  ] 

(1/6)[ Uckvu + ovu;u + v.^y + ] + 

(i/9)i;uuu , 

= (l/4)[ UUuU + ^ + UL» + Kill^ ] 

(l/6)[ uuuU + uu yj; + uzvuu + \^uu ] + 

(1/9)0000 , 

= (i/4)cy^ + ^ ] 
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(l/6)[ + vj^U + \^U ] + 

(i/9)uuuu , 

= (1/16)[ UUU6/ + uaiv + ^ 

y; + + 

+ <\̂  + + 

Vi:^^ + + Vii^^ ] - T, 

= (1/16)[ yuuu; + ^u<jj + + yvju^Li 

yoiyjj + vu^ + u|^ + + 

lUZJ SU + ^^0^ + lUj^ + (jjUdJ + 

V=L!^ + ] _ %, 

= (l/24)[ u yyoj + v + vJ u,^ OJ + + 

U  + V Vi^ + u + 

+ viiJfU + m^u + uiji; 0 + 

vJ + o + 0 + 

Vyv^J + + 

+ (y ̂  + vA,jç^ + 

+ 
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+ (1  ̂ + \V^ ] -

(1/18) [ uiV + uo yiJ; + u^/uu + vv^uU 

U'^O + u\v^u + u + u + 

+ ViJJ^ ] + 

(1/9 ' VUUO , 

,(7) ̂  

+ ULjy^ + MLiJU + ULliLl ] -

(1/12) [ [U ̂  + IV HJ I + LUI V + [UIVJI ], 

gf?) = (1/8)[ + iSjLiJ + iLËÙ + + 

v̂ ; + yî j + iW I + ug_ù ] + 

(1/12)[ Li^U + uy^u + llitl u + ], 

= (1/8)[ + Wl + "Wi + 

yw + + Wi + ̂  ] -

(1/12)[ uW + + \ \v^l + ], 

j(2,l) ̂  (i/2)[ vyy/ + ] - (1/3) ̂  , 

(m'(G)\ _ /nX6)\ 
=1 Ijkmno atl 'Jklomn' 
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APPENDIX B. SYMMETRY IMPLICATIONS 

Here we examine the implications of various symmetries 

such as parity or reflection invariance to obtain the 

Onsager-Casimlr relations. We begin by applying the parity 

A 
operator P to the heat flux vector q and to the viscous-

pressure tensor J = ̂  - nkT8^^\ The fluxes are both polar 

quantities and hence exhibit the symmetry 

Pq = -q and PC = 2"* B. 1 

The most general form for these fluxes is 

-q = <S.i>-|? + B.2 

and 

-T '  B.3 

A 

If we apply P to q, we obtain the condition 

-q = (P<D,A».|| - (P<D.|»02|». B.H 

A 

Therefore (D,A) must be even under P and odd. 

The tensors <D,A> and <D,B) are linear combinations 

A 

of isotropic tensors formed from the unit vectors E or H 

( 2 )  
and the tensors and V. Any second rank tensor so 

A 

constructed will be even under P, but only for the electric 

field case can we construct a third rank tensor odd under 

A A 4^ A A A A 
P. This is because PE = -E and PH = H. A similar argument 
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A 

can be given for P applied to g, and hence we can conclude 

that visco-thermal coupling can occur only for the electric 

field case. 

this thesis, both the operators P and J are even under P, 

and thus there can be no coupling of tensors with different 

parity. This means that if we divide B, into even and odd 

parity parts as B = the equation governing is 

Forming the moments, one obtains a set of scalar equations 

for which the only solution is zero, since the coefficient 

matrix is nonsingular. Therefore, we have no visco-thermal 

coupling for these molecules in an electric field. For 

symmetric top molecules, however, this is not the case (15). 

We now consider the implications of the time reversal 

/\ A 

operator T. Since TD = -D, we have 

For the linear ̂  molecules under consideration in 

A 

0 = f<°'F(B^) + J(|„). B.5 

<TB,A> =-A = <TJ(A),^> + <TP(A),A) B.6 

and 

<TA,D> =-TA^ = <TA,J(A)> + <TA,F(A)> . B.7 

Subtracting equation B.7 from B.6 we obtain 

-h + = <TJ(A),A> - <TA,J(A)> + <TF(A),A> -

<TA,P(A)> . B.8 
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A A ^ 
In reference (17) It Is shown that TJ = J T, and It Is easily 

verified that TP = F*T. (Here <j',J(^)> = Thus 

we have 

A = TA^ B.9 
« » 

or 

X(H) = X^(-H) and \(£) = X^(E). B.IO 

Since ̂  and 

(g^^^d))^ = -S^^^(l), we have the transverse coefficient 

/iXg = 0 for the electric field case. A similar argument can 

be given to show that the transverse coefficients are also 

absent from the shear viscosity and to obtain the remaining 

Onsager-Casimir relations. These remaining relations are 

given in reference (11). 
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LIST OF SYMBOLS 

h = Planck's constant 

k = Boltzmann's constant 

= Bohr magneton 

= nuclear magneton 

= rotational g factor 

dg = magnitude of the dipole moment 

d = internuclear distance 

p = hydrostatic pressure 

H = magnetic field 

g = electric field 

f(^) = N-particle distribution function (p. 7) 

^i'^i ~ generalized coordinates and momenta (p. 7) 

f(^^ = single-particle distribution function (p. 8) 

-i'-^i ~ position and velocity of particle 1 

k = unit vector perpendicular to the excluded volume (p. 10) 

= vector from the mass center to point of contact (p. 11) 

= angular velocity of particle i 

g = relative velocity of two particles (p. 11) 

M = angular momentum 

W = (m/2kT)^/^(x - u) 

g = (2IkT)"^/^M 

m = molecular mass 

I = moment of inertia 

n = number density (p. l4) 
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u = stream velocity (p. l4) 

T = temperature (p. l4) 

F = magnetic or electric field operator (p. 13) 

f(^) = local equilibrium distribution function (p. l4) 

= distortion of local equilibrium distribution function 

(p. 15) 

^ = thermal conductivity distortion (p. 15) 

I = viscosity distortion (p. 15) 

J. " matrix element of J (p. 17) 

J = collision operator (p. l4) 

( 0  
J 

t(1 

= "spherical" part of J (p. l8) 

= "nonspherical" part of J (p. l8) 

= n"lf(°)p - n"lj(0) (p. 19) 

= (p. 19) 

and = isotropic tensors (p. l8) 

= (p. 19) 

(^'^) = matrix element of (p. 20) 
P jQ 

P'^) = matrix element of P (p. 20) 
P 

(p.q) = matrix element of (p. 21) 

(q) and B^'^^(q) = isotropic tensors (p. 21) 

(q) and B^'^^(q) = isotropic tensors (p. 23) 

l'" 

l{0 

«ij 

n(a 
im 

»m 

^ = heat flux vector (p. 26) 

^ = thermal conductivity tensor (p. 26) 

S^")(x) = Sonine polynomial (p. 26) 

^pqst _ thermal distortion expansion coefficients (p. 26) 

D = -f(°)[(5/2-w2) + (1-Q^)]W (p. 27) 
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= thermal distortion expansion coefficients (p. 28) 

h^j = thermal conductivity collision integral (p. 28) 

= (mkT/if)^/^(/(^gyd^h)(H/p) 

/p = (m/rrkT)^/^(/igh/d^I)(H/p) 

" (dg/d^kT)(m/2ifI)(E^/p) 

= thermal conductivity coefficient (p. 31) 

a = minor axis of an ellipsoid of revolution 

b = major axis of an ellipsoid of revolution 

R = b/a 

«r> = average cross-sectional area of a molecule 

S,L = radius and length of the cylinder of a spherocyllnder 

A ̂  = (AX^ + 6^2 )/2 

^Y/2 half-saturation 

A Ai = AAg 

A Xii = A 

\r "^^3 

P = pressure tensor (p. 59) 

= f(0)(4w2/15 - 2Q^/5) (p. 59) 

Dg = 2f(0)%W (p. 59) 

^ = shear viscosity tensor (p. 59) 

H. = bulk viscosity (p. 59) 

~ coupling coefficient for shear and bulk 

viscosities (p. 59) 

gPqst _ viggggity distortion expansion coefficients (p. 60) 

b^j = viscosity collision integrals (p. 62) 
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= shear viscosity coefficient (p. 63) 

h(k) = molecular supporting function (p. 79) 
A 

h^fk) = excluded volume supporting function (p. 8l) 

( 2 ) 
= surface element of excluded volume (p. 8l) 

A 
P = parity operator (p. 99) 

T = time reversal operator (p. 100) 
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